Problem
Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n?
Example:
Input: 3
Output: 5
Explanation:
Given n = 3, there are a total of 5 unique BST's:
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
Notes
Solution 1: DP
In this dp problem, the hard part is to figure out the transition.
-
States: n
-
Transition:
Some intuition:
assume dp[0] = 1 dp[1] = dp[0]*dp[0] dp[2] = dp[0]*dp[1] + dp[0]*dp[1] dp[3] = dp[0]*dp[2] + dp[1]*dp[1] + dp[2]*dp[0] dp[4] = dp[0]*dp[3] + dp[1]*dp[2] + dp[2]*dp[1] + dp[3]*dp[0] dp[5] = dp[0]*dp[4] + dp[1]*dp[3] + dp[2]*dp[2] + dp[3]*dp[1] + dp[4]*dp[0] dp[6] = dp[0]*dp[5] + dp[1]*dp[4] + dp[2]*dp[3] + dp[3]*dp[2] + dp[4]*dp[1] + dp[5]*dp[0]
for i in range(1, n+1): for j in range(0, i): dp[i] += dp[j]*dp[i-1-j]
-
Base case: dp[0] = 1
Solution 2: Catalan Number
Cn = 1/(n+1)(2n n) = (2n)!/(n+1)!n!
The first Catalan numbers for n = 0, 1, 2, 3, ... are
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012,
742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190,
6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452
Solution
Solution 1: DP
class Solution:
def numTrees(self, n):
if n < 1:
return 0
dp = [0] * (n+1)
dp[0] = 1
for i in range(1, n+1):
for j in range(0, i):
dp[i] += dp[j]*dp[i-1-j]
return dp[n]
Solutiojn 2: Catalan Number
import math
class Solution:
def numTrees(self, n):
return math.factorial(2*n)/(math.factorial(n)*math.factorial(n+1))