Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of elements in this subset satisfies:
Si % Sj = 0 or Sj % Si = 0.
If there are multiple solutions, return any subset is fine.
Example 1:
Input: [1,2,3]
Output: [1,2] (of course, [1,3] will also be ok)
Example 2:
Input: [1,2,4,8]
Output: [1,2,4,8]
class Solution:
def largestDivisibleSubset(self, nums: List[int]) -> List[int]:
if not nums:
return nums
dp = [1] * len(nums)
pre = [i for i in range(len(nums))]
nums.sort()
max_i = 0
for i in range(len(dp)):
for j in range(i):
if nums[i] % nums[j] == 0 and dp[j] + 1 > dp[i]:
dp[i] = dp[j] + 1
pre[i] = j
if dp[i] > dp[max_i]:
max_i = i
ans = []
i = max_i
while pre[i] != i:
ans.append(nums[i])
i = pre[i]
ans.append(nums[i])
return ans
class Solution:
def largestDivisibleSubset(self, nums):
S = {-1: set()}
H = {}
for n in sorted(nums):
H[n] = max((H[d] for d in S if x % d == 0), key=len) | {n}
return list(max(S.values(), key=len))